下面整理下python有哪些方式可以读取数据文件。
1. python内置方法(read、readline、readlines)
read() : 一次性读取整个文件内容。推荐使用read(size)方法,size越大运行时间越长readline() :每次读取一行内容。内存不够时使用,一般不太用readlines() :一次性读取整个文件内容,并按行返回到list,方便我们遍历
2. 内置模块(csv)
python内置了csv模块用于读写csv文件,csv是一种逗号分隔符文件,是数据科学中最常见的数据存储格式之一。
csv模块能轻松完成各种体量数据的读写操作,当然大数据量需要代码层面的优化。
csv模块读取文件
# 读取csv文件
import csv
with open('test.csv','r') as myFile:
lines=csv.reader(myFile)
for line in lines:
print (line)
csv模块写入文件
'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:531509025
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
import csv
with open('test.csv','w+') as myFile:
myWriter=csv.writer(myFile)
# writerrow一行一行写入
myWriter.writerow([7,8,9])
myWriter.writerow([8,'h','f'])
# writerow多行写入
myList=[[1,2,3],[4,5,6]]
myWriter.writerows(myList)
3. 使用numpy库(loadtxt、load、fromfile)
loadtxt方法
loadtxt用来读取文本文件(包含txt、csv等)以及.gz 或.bz2格式压缩文件,前提是文件数据每一行必须要有数量相同的值。
import numpy as np
# loadtxt()中的dtype参数默认设置为float
# 这里设置为str字符串便于显示
np.loadtxt('test.csv',dtype=str)
# out:array(['1,2,3', '4,5,6', '7,8,9'], dtype=' load方法 load用来读取numpy专用的.npy, .npz 或者pickled持久化文件。 import numpy as np # 先生成npy文件 np.save('test.npy', np.array([[1, 2, 3], [4, 5, 6]])) # 使用load加载npy文件 np.load('test.npy') ''' out:array([[1, 2, 3], [4, 5, 6]]) ''' fromfile方法 fromfile方法可以读取简单的文本数据或二进制数据,数据来源于tofile方法保存的二进制数据。读取数据时需要用户指定元素类型,并对数组的形状进行适当的修改。 ''' 遇到问题没人解答?小编创建了一个Python学习交流QQ群:531509025 寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书! ''' import numpy as np x = np.arange(9).reshape(3,3) x.tofile('test.bin') np.fromfile('test.bin',dtype=np.int) # out:array([0, 1, 2, 3, 4, 5, 6, 7, 8]) 4. 使用pandas库(read_csv、read_excel等) pandas是数据处理最常用的分析库之一,可以读取各种各样格式的数据文件,一般输出dataframe格式。 如:txt、csv、excel、json、剪切板、数据库、html、hdf、parquet、pickled文件、sas、stata等等 read_csv方法 read_csv方法用来读取csv格式文件,输出dataframe格式。 import pandas as pd pd.read_csv('test.csv') read_excel方法 读取excel文件,包括xlsx、xls、xlsm格式 import pandas as pd pd.read_excel('test.xlsx') read_table方法 通过对sep参数(分隔符)的控制来对任何文本文件读取 read_json方法 读取json格式文件 df = pd.DataFrame([['a', 'b'], ['c', 'd']],index=['row 1', 'row 2'],columns=['col 1', 'col 2']) j = df.to_json(orient='split') pd.read_json(j,orient='split') read_html方法 读取html表格 read_clipboard方法 读取剪切板内容 read_pickle方法 读取plckled持久化文件 read_sql方法 读取数据库数据,连接好数据库后,传入sql语句即可 read_dhf方法 读取hdf5文件,适合大文件读取 read_parquet方法 读取parquet文件 read_sas方法 读取sas文件 read_stata方法 读取stata文件 read_gbq方法 读取google bigquery数据 5、读写excel文件(xlrd、xlwt、openpyxl等) python用于读写excel文件的库有很多,除了前面提到的pandas,还有xlrd、xlwt、openpyxl、xlwings等等。 主要模块: xlrd库:从excel中读取数据,支持xls、xlsxxlwt库:对excel进行修改操作,不支持对xlsx格式的修改xlutils库:在xlw和xlrd中,对一个已存在的文件进行修改openpyxl:主要针对xlsx格式的excel进行读取和编辑xlwings:对xlsx、xls、xlsm格式文件进行读写、格式修改等操作xlsxwriter:用来生成excel表格,插入数据、插入图标等表格操作,不支持读取Microsoft Excel API:需安装pywin32,直接与Excel进程通信,可以做任何在Excel里可以做的事情,但比较慢 6. 操作数据库(pymysql、cx_Oracle等) python几乎支持对所有数据库的交互,连接数据库后,可以使用sql语句进行增删改查。 主要模块: pymysql:用于和mysql数据库的交互sqlalchemy:用于和mysql数据库的交互cx_Oracle:用于和oracle数据库的交互sqlite3:内置库,用于和sqlite数据库的交互pymssql:用于和sql server数据库的交互pymongo:用于和mongodb非关系型数据库的交互redis、pyredis:用于和redis非关系型数据库的交互